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Abstract Density functional theory, employing B3LYP/

DZVP and B3LYP/6-31G*(LANL2DZ for Tc), has been

used to investigate the interconversion mechanism between

formal TcO3? and TcO2
? core of 99mTc labeled amine-

oxime (AO) complex, in which two water molecules have

been used to simulate the possible interconversion process.

The obtained results indicate that the length of amine-

amine hydrocarbon backbone of AO ligand has a signifi-

cant influence on the stabilities of formal TcO3? and

TcO2
? complex. The interconversion process between

TcO–BnAO and TcO2–BnAO has been amply discussed,

which releases the useful information for the further

investigation of the structure and hypoxic mechanism of
99mTc-HL91.

Keywords Interconversion mechanism � TcO3? core �
TcO2

? core � 99mTc-HL91 � B3LYP

1 Introduction

99mTc labeled amine-oxime (AO) complexes have been

extensively studied in order to develop 99mTc radiophar-

maceuticals for the measurement of regional cerebral blood

flow. 99mTc-d,l-HMPAO are found to be the first 99mTc

labeled brain perfusion imaging agent approved by FDA

[1]. Later, 99mTc-HL91 (99mTc-BnAO) has been evaluated

as a tissue hypoxia imaging agent [2–8], and it was

reported that the intrinsic properties of the 99mTc-HL91

were predominately responsible for the hypoxia selectivity

[2], not the uncomplexed HL91 ligand [4]. But until now,

the structure and hypoxic mechanism of 99mTc-HL91 are

still not clear. It is interesting that these technetium(V)

amine oxime complexes showed both five-coordinate

monooxo technetium(V) spicies and six-coordinate trans-

dioxo technetium(V) spicies, in which the former has the

formal oxidation state of TcO3? and the latter has the

formal oxidation state of TcO2
?. The length of amine-

amine hydrocarbon backbone of AO ligand has significant

influence on the formation of formal TcO3? or TcO2
?

complex [9–12]. Moreover, the syn and anti isomers of
99mTcO(PnAO-6-R) can interconvert in the presence of

water, in which 99mTcO2(PnAO-6-R) intermediate could be

formed [13]. It was also reported that 99Tc-HL91 could in

solution adopt both the penta-coordinated mono-oxo form

and hexa-coordinated di-oxo form [14], but it is still

uncertain which form is related to the uptake mechanism of
99mTc-BnAO. Brauers et al. [14] suggested that the uptake

mechanism of this compound might be related to the

interconversion of these two forms. However, no evidence

from the experiments has been established for this

assumption up to now. It is essential from theoretical cal-

culation to elucidate the probable interconversion

mechanism between formal TcO3? and TcO2
? core of
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99mTc-AO, which is useful for understanding the structures

and hypoxic mechanisms of these applicable compounds.

The studied reactions are shown in Scheme 1, in which

both five-coordinate monooxo technetium(V) complex 1

and six-coordinate trans-dioxo technetium(V) complex 2

are neutral.

2 Methods of calculations

The Becke-3 Lee-Yang Parr (B3LYP) method [15, 16] was

used in all calculations in this work, using the Gaussian 03

program package [17]. In order to accurately and quanti-

tatively characterize the electron structure, it was essential

to use all-electron wavefunctions for the analysis of

quantum theory of atoms in molecules (QTAIM) [18, 19],

for which the DZVP basis set [20] was employed in-place

of a effective core potential (ECP) basis set, such as

LANL2DZ [21] in Gaussian program. The geometries of

reactants, products, complexes, intermediates and transi-

tion states were fully optimized with B3LYP/DZVP

method to the convergences criteria of 3.0 9 10-4,

4.5 9 10-4, 1.2 9 10-3, 1.8 9 10-3 as acceptance

thresholds for the gradients of the root mean square (RMS)

force, maximum force, RMS displacement and maximum

displacement vectors, respectively. LANL2DZ basis set

has also been employed for Tc atom and 6–31G(d) basis

sets have been used for other atoms for comparison.

Structures residing at minima or maxima (stationary

points) on the potential energy surface (PES) of this reac-

tion, have been located and characterized by their number

of imaginary frequencies, at the B3LYP/DZVP level of

theory, except where noted elsewhere. Intrinsic reaction

coordinate (IRC) [22–24] computations were used to trace

the reaction paths to confirm that the TS structures obtained

corresponded to the two adjacent minima proposed as lying

on either side of that TS. The infrared spectral results

showed that Tc-O stretching vibration of TcO2–BnAO [12]

and TcO–PnAO [10] were 784 and 923 cm-1, and calcu-

lated values were 825 and 963 cm-1, from which one can

derive that the scaling factor is 0.95 that was comparable

with 0.96 for B3LYP/6-31G(d) calculation [25, 26]. The

relative energies of all structures found at these stationary

points were corrected with their corresponding zero-point

vibrational energies (ZPE) scaled by 0.95.

The solvent effects of the title reactions have been per-

formed with the PCM model [27–33] with water (e = 78.39)

as solvent at a temperature of 298 K, denoted as SCRF-

B3LYP/DZVP. Water molecules are used not only as sol-

vents, but also as the reactants for the interconversion

process of formal TcO3? and TcO2
? complexes. For the

reaction of TcO–BnAO ? 2H2O ? TcO2–BnAO ? H2O,

SCRF-B3LYP/DZVP method has been employed to opti-

mize the structure parameters of the reactants, complexes,

intermediates, transition states and products, and thus

obtained geometries have been characterized with the

vibrational analysis at the same calculation level.

In the light of the QTAIM approach, critical points

(CPs) of rank 3 were identified in the electron densities,

obtained at B3LYP/DZVP level of theory. There are bond

critical points (BCPs), ring critical points (RCPs) and cage

critical points (CCPs). The existence of a BCP between two

atoms in an equilibrium molecular geometry is the neces-

sary condition for two atoms that are bonded to one

another. The pairs of gradient paths that originate a BCP

and terminate at neighboring nuclei define a line through

which electron distribution, q(r), is a maximum with

respect to any lateral displacement. In this paper, BCP

properties were obtained using AIMPAC [34, 35] and

AIM98PC [36], and the molecular graphs were studied and

plotted with AIM2000 [37, 38].

3 Results and discussions

3.1 The stability of TcO2-core

It was well-known that the length of amine-amine hydro-

carbon backbone of AO ligand has a significant influence

on the formation of formal TcO3? or TcO2
? complex [9–

12]. Previous experiments have confirmed that ligands

EnAO (see Scheme 1, m = 0, R1=R2=CH3) and PnAO (see

Scheme 1, m = 1, R1=R2=CH3) give a five coordinate,

monooxo technetium complexes, while ligand PentAO (see

Scheme 1, m = 3, R1=R2=CH3) provided six coordinate,

dioxo core complex. However, it is not clear whether

the structure of Tc–BnAO (see Scheme 1, m = 2,
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R1=R2=CH3) will adopt monooxo or dioxo core form.

Therefore, the characterizations of their structures and

stabilities from DFT calculation will provide valuable

information.

The main geometric parameters of 1 and 2 optimized

with different basis sets in gas phase and in water are listed

in Table 1, from which one can observe that the geometric

alterations for different basis sets and different media are

not noticeable. For example, the differences for bond

lengths of Tc–O and Tc–N are within 0.02 Å. Even for the

distances of O���H–O and N���N, the basis set effect is still

small. However, the solvent H2O has some influence on

small ring system (m = 1), and the biggest difference for

the distance of O���O reaches 0.204 Å. For species 1, the

group Tc=O is on the top of plane of NNNN, forming a

pyramid structure; while for species 2, Tc atom is almost

on the same plane with NNNN. This may cause the dif-

ferent stability of formal TcO2
? core in different ring

lengths as shown in Table 2. The interpretation for these

results is that the approaching of Tc atom to NNNN plane

will cause the expansion of ring to reduce the repulsion

between these groups, through increasing the N–Tc–N

angle and thus N–N distances, which in turn increase the

distance of O���H–O. For m = 3, the distance of O���H–O in

formal TcO2
? core is very close to that in formal TcO3?

core; while for m = 1, the distance of O���H–O in formal

TcO2
? core is about 0.4 Å longer than that in formal

TcO3? core. Such alteration will change the strength of

O���H–O, which can be observed from change of the

electron density at bond critical point (qb), as illustrated in

Fig. 1. It can be observed that values of qb for the O���H in

1a and 2a are 0.083 and 0.018 au, respectively, which

reveals that the strength of O���H–O becomes very weak in

2a, and it is too unstable to be isolated from the experi-

ments. The hydrogen-bonding energy can be estimated to

be about 12.3 kcal/mol, with the calculated energy differ-

ence between 1a and an isomer of 1a that the hydrogen

atom is turned aside from O���H–O. The hydrogen-bonding

Table 1 The chief geometric parameters (bond length in Å) of 1 and 2 optimized with different basis sets both in gas phase and in water (see

Scheme 2 for the atomic numbering systems)

Tc1–O2 Tc1–O10 Tc1–N5 Tc1–N6 Tc1–N3 Tc1–N4 O7–O8 N3–N4

1a 1.698a – 2.132 2.156 1.969 1.953 2.497 2.803

1.720b 2.132 2.148 1.958 1.945 2.520 2.799

1.690c 2.122 2.144 1.957 1.941 2.491 2.789

1.708d 2.122 2.136 1.946 1.935 2.499 2.785

2a 1.781 1.773 2.076 2.132 2.257 2.172 2.894 3.411

1.783 1.783 2.103 2.157 2.229 2.160 3.098 3.362

1.768 1.759 2.060 2.105 2.246 2.165 2.785 3.408

1.769 1.768 2.079 2.117 2.215 2.153 2.831 3.379

1b 1.698 – 2.146 2.146 1.986 1.964 2.477 2.888

1.719 2.147 2.137 1.972 1.953 2.508 2.884

1.690 2.138 2.132 1.973 1.950 2.467 2.869

1.708 2.138 2.124 1.962 1.942 2.500 2.866

2b 1.775 1.770 2.085 2.129 2.339 2.221 2.656 3.686

1.781 1.781 2.100 2.133 2.297 2.207 2.690 3.623

1.761 1.757 2.075 2.113 2.332 2.216 2.626 3.679

1.766 1.764 2.088 2.116 2.295 2.203 2.647 3.624

1e 1.695 – 2.150 2.171 1.991 1.975 2.455 2.982

1.717 2.151 2.165 1.978 1.965 2.473 2.976

1.688 2.142 2.160 1.978 1.963 2.443 2.968

1.706 2.142 2.154 1.968 1.954 2.462 2.962

2e 1.772 1.767 2.087 2.135 2.379 2.266 2.602 3.830

1.779 1.779 2.101 2.137 2.323 2.251 2.625 3.755

1.758 1.755 2.078 2.118 2.371 2.263 2.578 3.824

1.763 1.763 2.089 2.119 2.323 2.251 2.595 3.757

a B3LYP/DZVP
b SCRF-B3LYP/DZVP
c B3LYP/6-31G(d) (LANL2DZ for Tc)
d SCRF-B3LYP/6-31G(d) (LANL2DZ for Tc)
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energy in 2a is only 1.7 kcal/mol with the same calculation

method. Therefore, the loss of hydrogen-bonding is the

main contribution to the destabilization of 2a.

From the structures of 1 and 2 in Scheme 1, one can break

two OH bonds and two R2N–(TcO) bonds in the reactant;

while one can also make two NH bonds, one Tc=O bond and

two dative R2HN–(TcO2) bonds in the product. In order to

estimate the energy change, the following five reactions have

been designed: (1) H2O ? 2H ? O; (2) (CH3)2 NH ?
(CH3)2 N ? H; (3) TcO2 ? TcO ? O; (4) (CH3)2

N–(TcO) ? TcO ? (CH3)2N; (5) (CH3)2NH–(TcO2) ?
TcO2 ? (CH3)2NH. B3LYP/DZVP calculations, plus the

ZPE with 0.95 scaling factor, indicate that the reaction heats

for above five reactions are 233, 100, 127, 70 and 38 kcal/

mol, respectively, from which one can work out that the

reaction releases energy of about 30 kcal/mol. Although this

is a very coarse estimation, in which one ignores the ring

distortion, the repulsion between atoms in the ring and TcO

or TcO2 and the change of O–H���O bonding, it is still helpful

for understanding the reaction process.

In addition, the basis sets have some influence on the

geometric parameters and energetics. The bond lengths

related to Tc obtained with LANL2DZ are shorter than

those optimized with DZVP basis set (see Table 1) and the

LANL2DZ basis set probably overestimates the stability of

complex 2, which is about 5 kcal/mol from the data in

Table 2. It can be explained that LANL2DZ basis set might

give less repulsion between Tc atom and N or O atoms due

to the frozen core electrons. Therefore, only DZVP results

have been discussed afterward.

3.2 The interconversion mechanism of formal TcO3?

and TcO2
?

All the possible stationary points along the reaction paths

have been located and verified. The main atomic number-

ing systems of the possible stationary points are shown in

Scheme 2, in which two water molecules are involved in

the interconversion process. It is clear that the proposed

interconversion process has two distinctive steps, i.e., the

addition of two water molecules and the leaving of one

water molecule (from 1 to INT1), and proton transfer with

the aid of one water molecule (from INT1 to product 2).

Not only the water molecules are as reactants, but also the

water molecules are acted as solvent that has certain effect

to the interconversion reaction. As the real reactions take

place in water solution, the following discussions are based

on SCRF-B3LYP calculations, except noted otherwise.

The chief geometrical parameters (bond length in Å) for

transition states and intermediate, optimized in both gas

phase and water solution, are listed in Table 3, from which

one can see that the geometric parameters optimized with

different media are quite similar for m = 2 case. For the

first addition step, the reaction proceeds to INT1b via

transition state TS1b, a six-membered loose ring structure

in addition portion, in which the bond length of the forming

Tc–O is still about 0.6 Å longer than that in 2b (comparing

Tables 1 and 3) and the bond lengths of O14���H13 and

N3���H11 in this ring are within the range of 1.2–1.5 Å.

The intermediate INT1b adopts TcO(OH) form, in which

Tc–OH is a typical single bond and the whole big ring is

expanded as the Tc atom sits in the plane of NNNN. Since

the energy for the species that a water molecule sticks on

INT1b is almost the same as those of INT1b ? H2O, it is

reasonable to speculate that the forming water molecule

will leave INT1b and enter water solution. INT1b will

finish the proton transfer from TcO(OH) to N atom with the

aid of one water molecule via a transition state TS2b, in

which the Tc-O bonding is in the middle of a double bond

and a single bond and the bond distances of O14���H13 and

N3���H11 in this ring ranges from 1.2 to 1.5 Å. Here this

water molecule is like as a catalyst, and it will be recovered

and enter into water solution as the formation of final

product 2b.

The schematic description of the potential energy sur-

face for 1b ? 2H2O is given in Fig. 2l, from which one can

observe that product 2b is a little more stable than reactant

1b. The energy barriers for the first step and second step are

Table 2 The relative energies

(kcal/mol) of TcO2–AO relative

to TcO–AO ? H2O

a DZVP
b 6-31G(d), except LANL2DZ

for Tc

B3LYP B3LYP ? 0.95ZPE SCRF–B3LYP SCRF–B3LYP ? 0.95ZPE

2a 17.1a 23.2 10.8 16.6

12.3b 18.6 6.2 12.3

2b -4.0 2.4 -8.3 -2.0

-9.3 -2.9 -13.8 -7.6

2c -3.6 2.7 -4.5 2.1

-8.8 -2.4 -9.8 -3.2

2d -5.7 0.6 -6.3 0.1

-10.9 -4.7 -11.8 -5.5

2e -7.0 -1.0 -9.8 -4.0

-12.1 -6.1 -15.2 -9.3
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10.2 and 15.8 kcal/mol, so the second step is the rate-

controlling one. The reverse process is also possible as the

energy barrier for 2b–INT1b is 22.4 kcal/mol. Once the

intermediate INT1b is formed, the reaction will proceed to

1b more easily than back to 2b, which might be responsible

for the structure uncertainty of Tc-HL91. In order to test

whether the geometric optimization will change the relative

energy obviously or not, single-point SCRF calculations

have been performed with optimized geometrics in gas

phase for comparison. It turns out that the energy differ-

ences for the possible stationary points are all less than

2 kcal/mol, which has been observed for other reactions

[39–42].

The potential energy profiles for different ring-lengths

are depicted in Fig. 2r, from which one can see that the

energies of intermediate INT1a and product 2a are all

about 12 kcal/mol above that of 1a. This thermal instability

prevents the interconversion from 1a to 2a to take place,

which is in good agreement with the experimental fact that

only TcO–PnAO crystal could be formed. For m = 3 case,

the energy barriers for the first step and second step are all

close to 10.0 kcal/mol, and 2e is the most stable one among

Fig. 1 Molecular graphs,

together with the main densities

at bond critical points (qb in au).

Bond, ring critical and cage

points are denoted by red,

yellow and green dots,

respectively
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our studied systems, which has been confirmed by exper-

iments that the TcO2–PentAO is isolated. The energy of

INT1e is almost the same as that of 1e, and the energy of

TS1e is also very close to that of TS2e. Even if the energy

barrier of the reverse process from 2e to INT1e is less than

20 kcal/mol, the possibility for the reverse process is quit

low due to the thermal stability of 2e.

In the real experimental systems, there are six methyl

substituents on the backbone, which is also called

Tc-HL91. In order to consider the substituent effect, two

types of substituent forms (R1=R2=CH3 and R1=CH3,

R2=H), as shown in Fig. 2r, have been chosen. From

Fig. 2r, one can see that six methyl substituents will

increase the relative energies for all the stationary points,

especially for 2c, which leads to that the stability of 2c is

almost the same as that of 1c (Table 2). Therefore, it turns

out that the chance for the interconversion from 2c to 1c

becomes larger.

In order to verify the above calculation results, the

ligand exchange method with Tc-GH intermediate has been

employed to obtain the Tc–BnAO complex and analyzed

with HPLC. The obtained chart, shown in Fig. 3, indicates

that there are three main HPLC peaks, which probably

correspond to three forms of Tc–BnAO complexes, i.e.,

TcO–BnAO, TcO(OH)–BnAO and TcO2–BnAO. Since the

stability of TcO2–BnAO is relatively higher than that of

TcO–BnAO, the peak with retention time 23.40 min in

Fig. 3 might be from 99mTcO2–BnAO complex. It is well

known that ligand exchange method with 99mTc–GH

intermediate will provide the 99mTcO-complex, therefore,

there might be one of the peaks in Fig. 3 that comes from

TcO–BnAO. As the energy barrier for conversion of

TcO(OH)–BnAO to TcO2–BnAO is about 10 kcal/mol

higher than that of TcO–BnAO to TcO(OH)–BnAO, and

the stability of TcO2–BnAO is comparable to that of TcO–
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Scheme 2 Typical model of interconversion process for Tc–AO

complexes (see Scheme 1 for the different substituents)

Table 3 The chief geometrical parameters (bond length in Å) for transition states and intermediate of 1 ? 2H2O reaction in gas phase except for

the reaction of 1b ? 2H2O

Tc1–O2 Tc1–N3 Tc1–N4 Tc1–O10 O10–H13 H13–O14 O14–H11 N3–H11 N3–N4 O7–O8

TS1a 1.696 2.137 1.931 2.393 1.087 1.379 1.372 1.163 2.945 2.776

TS1b 1.694a 2.169 1.954 2.388 1.061 1.440 1.307 1.208 3.103 2.641

1.706b 2.158 1.946 2.385 1.053 1.471 1.309 1.213 3.094 2.656

TS1e 1.696 2.194 1.958 2.309 1.066 1.423 1.262 1.255 3.278 2.671

INT1a 1.716 2.192 1.939 2.109 – – – 1.029 3.097 2.859

INT1b 1.717a 2.275 1.952 2.065 – – – 1.024 3.324 2.696

1.734b 2.261 1.937 2.057 1.028 3.285 2.742

INT1e 1.719 2.311 1.959 2.033 – – – 1.023 3.461 2.697

TS2a 1.729 2.248 2.085 1.893 1.095 1.392 1.276 1.241 3.316 2.922

TS2b 1.727a 2.280 2.107 1.894 1.091 1.400 1.266 1.252 3.493 2.743

1.723b 2.251 2.094 1.924 1.063 1.469 1.292 1.233 3.443 2.776

TS2e 1.724 2.354 2.147 1.890 1.077 1.433 1.248 1.272 3.684 2.620

a Gas phase
b In water solution
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BnAO, TcO(OH)–BnAO might coexists with other two

forms in water solution.

3.3 The hypoxic mechanism of 99mTc–BnAO

It was reported that 99mTc–BnAO showed a selective

hypoxic accumulation only at 37 �C and little accumula-

tion at 20 and 4 �C. Moreover, the specific binding of
99mTc–BnAO may be a slower process than that of

BRU59–21 [43]. According to our experience, the lipo-

philicity of TcO–BnAO may be relatively higher than that

of TcO2–BnAO. If both complexes with formal TcO3?

core and TcO2
? core coexist in water, TcO–BnAO will first

cross the member into the cell by passive diffusion. The

data in Fig. 2 indicate that the conversion process from

TcO2–BnAO to TcO–BnAO is somewhat slow, but the

reaction will go quickly toward to TcO–BnAO not back to

TcO2–BnAO once the formation of TcO(OH)–BnAO,

which might be related to the hypoxic mechanism of
99mTc–BnAO. Although cellular reductase enzymes and

other complex factors in vivo may affect the accumulation

of Tc–BnAO in hypoxic cell, our calculation results of

interconversion mechanism between TcO2–BnAO and

TcO–BnAO are quite useful to further investigate the

hypoxic mechanism of Tc–BnAO in vivo. Further works

will be undertaken for including the real cellular reductase

enzymes in our calculations.

4 Conclusion

According to the above discussions, the following con-

clusions could be drawn:

The stabilities of formal TcO2
? and TcO3? core are

dependent on ring-length of backbone, the longer the ring,

the more stable the formal TcO2
? core. The reason for this

is that the ring expansion from formal TcO3?–TcO2
? core

will affect the hydrogen-bond strength of O…H–O.

The interconversion reaction between formal TcO2
? and

TcO3? core includes two distinct addition steps: the addi-

tion and proton transfer processes with the aid of water

molecules.

The stabilities of TcO–BnAO and TcO2–BnAO are

comparable. The interconversion from TcO–BnAO to

TcO2–BnAO needs to overcome two energy barriers of 10

and 15 kcal/mol, and that the latter is higher might be

responsible for the coexistence of TcO–BnAO, TcO(OH)–

BnAO and TcO2–BnAO.
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